

Readability ≠ Learnability

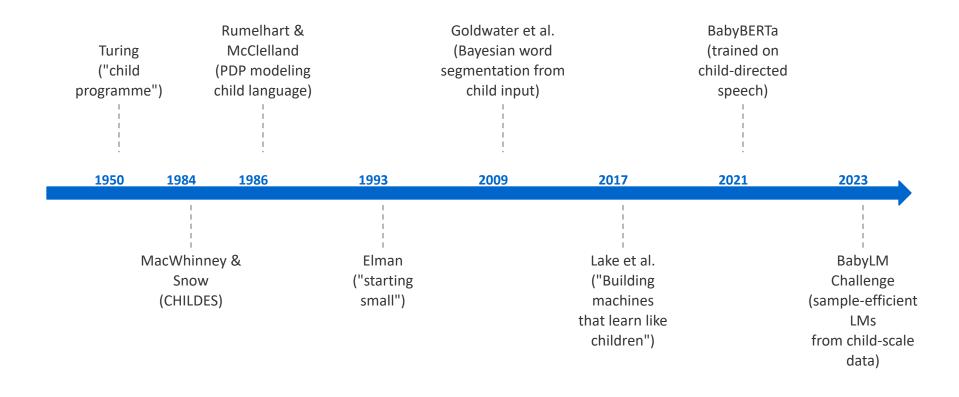
Rethinking the Role of Simplicity in Training Small Language Models

Ivan Lee and Taylor Berg-Kirkpatrick

UC San Diego

COLM 2025 10/7/25

A Longstanding Interest: Child Learning and NLP/AI



TinyStories: Can Simpler Data Enable Smaller Models?

Challenge: Very small models struggle to generate coherent text

Hypothesis: The training data is too complex

Intuition: Children develop language with limited exposure

Proposal: Restrict training data to only children's stories

✓ Result: 10-100M parameter models generate coherent narratives

A Natural Interpretation: The Developmental Lens

TinyStories Framing:

- children's stories with 3-4 year old vocabulary
- "children attain abilities with much less exposure to language than an adults"
- "comparable 'understanding' of language to that of children"

Note: Authors made no explicit causal claims about developmental mechanisms.

How this interpretation appears

Academic Literature

- Grouped with child-directed speech (CDS) research
- 'Mimicking human acquisition'
- Developmental frameworks

Media & Corporate

- 'Raise them on a strict diet of children's stories'
- Bedtime story narratives
- 'Tiny Language Models Come of Age' anthropomorphic framing

Community Discourse

- Casual use of child-learning analogies
- Parallels human development

ACL, EMNLP, NAACL, CONLL Microsoft, Quanta Magazine

The Open Question

What we know:

Small models trained on TinyStories generate fluent, coherent text.

What we DON'T know:

Whether this finding can be attributed to child-directed properties.

Are these properties special, or just one approach among many?

Roadmap

Replicate TinyStories' generation pipeline

Modify pipeline to vary target complexity (child-directed → adult-directed)

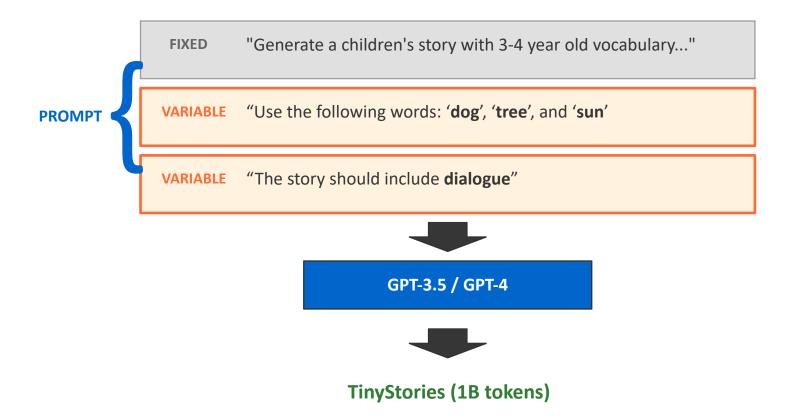
Validate we achieved the intended variation

Train small language models on both datasets

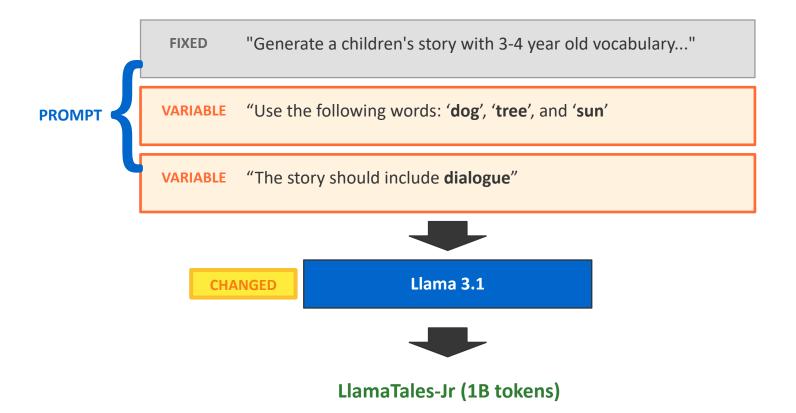
Sample from models and measure fluency/coherence

Key Question: Can we reproduce TinyStories' findings on data that does not leverage any child-directed properties?

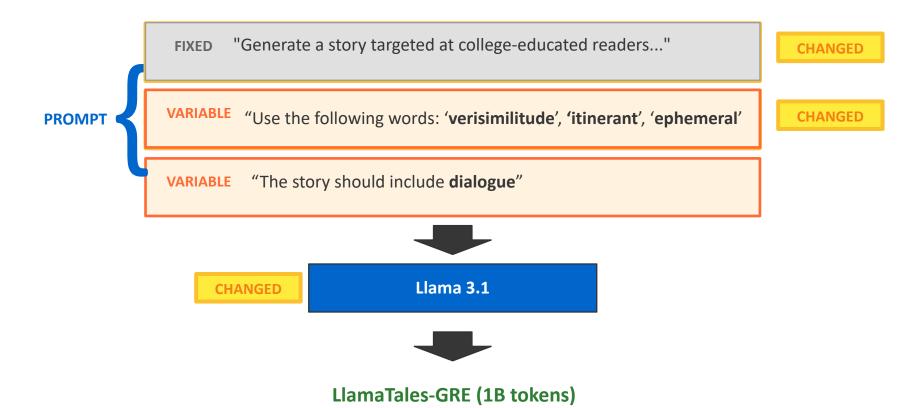
TinyStories Pipeline



LlamaTales-Jr Pipeline



LlamaTales-GRE Pipeline



Operationalizing language complexity

Readability:

- The ease with which a text can be read or understood (Trott, 2024)
- Long history in pedagogical contexts (Lively and Pressey, 1923; Flesch, 1948; Crossley et al., 2023b)
- Many automated metrics available

(e.g., Flesch-Kincaid, SMOG, Gunning Fog)

Question: Which metric should we use?

Validating our data

We tested a large subset of readability metrics:

- Classic readability formulas (Flesch-Kincaid, Dale-Chall, SMOG)
- Constituency parsing metrics (syntactic complexity)
- LLM-as-judge approaches

Consistent pattern:

- TinyStories & LlamaTales-Jr: High readability
- LlamaTales-GRE & standard corpora: Low readability

✓ Pipeline modification worked as intended

See paper for details

	TinyStories	LlamaTales-Jr	LlamaTales-GRE	FineWeb
Automated Readability	2.9	2.9	12.4	13.1
Coleman-Liau	3.7	3.8	10.4	11.8
Dale-Chall	5.7	5.7	9.1	9.3
Flesch-Kincaid	2.4	2.2	9.6	10.7
Gunning Fog	4.6	3.8	11.7	12.1
Linsear Write	4.2	3.3	13.2	12.7
SMOG	5.7	5.4	11.3	12.6
Spache Readability	2.7	2.5	5.5	5.5
Depth / Sentence	6.8	6.4	10.6	9.5
Width / Sentence	5.1	4.7	8.0	7.5
Nodes / Sentence	19.6	17.2	42.1	37.8
Readability	92.6	92.7	64.8	68.2
Coherence	90.1	89.5	94.4	77.4

Validating readability metrics

Question: Which metrics best capture readability?

Validation: Tested against CLEAR dataset

~5,000 passages rated by teachers for reading difficulty

Results (correlation with human judgment):

- All positively correlated
- Constituency parsing: Weakest
- Classic readability formulas: Better
- LLM-as-judge: Substantially stronger ✓

We use LLM-as-judge as our primary readability measure

Training small language models

Model architecture: decoder-only transformer

Model sizes: 262K to 33M parameters

Training data: Each model trained on one dataset

- TinyStories
- LlamaTales-Jr
- LlamaTales-GRE
- FineWeb (our representative of standard pretraining data)

Training duration: 10 epochs (10 billion tokens)

Evaluating fluency and coherence

Goal: Measure whether models generate coherent, fluent text

Method: LLM-as-judge (following TinyStories approach)

Sanity Check: correlation with common-sense quality ranking of LMs e.g.

- strong tier: Llama-3.1-70B, Qwen2-72B
- weak tier: Pythia-70M, GPT-2-small

Result: LLM-as-judge correlated well with ranking, outperformed perplexity

Inventory Check

Replicate TinyStories' generation pipeline

Modify pipeline to vary target complexity (child-directed → adult-directed)

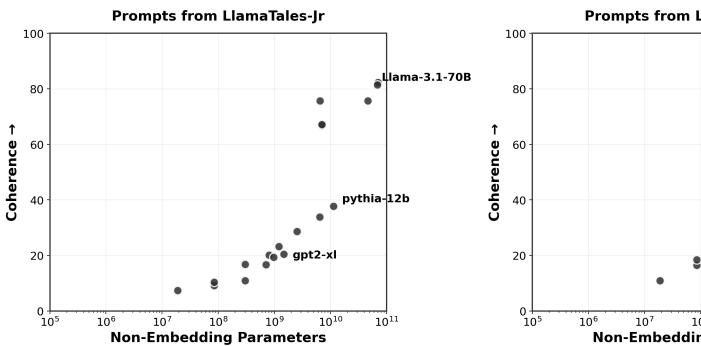
Validate we achieved the intended variation

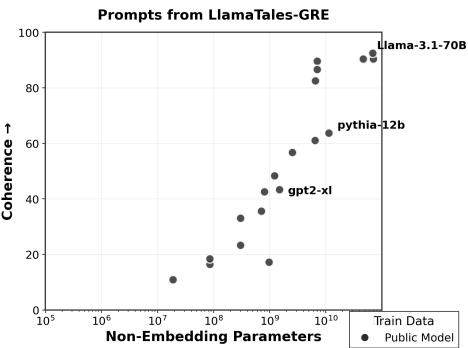
Train small language models on both datasets

Sample from models and measure fluency/coherence

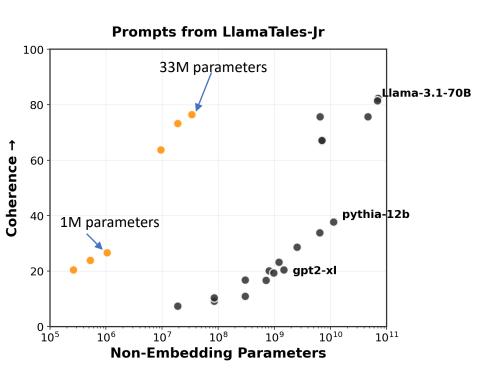
Ready to answer: Can we reproduce TinyStories' findings on data that does not leverage any child-directed properties?

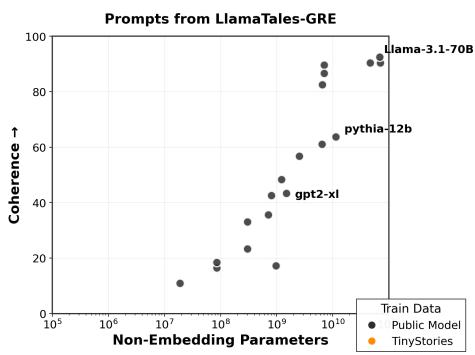
Coherence vs Parameter Count



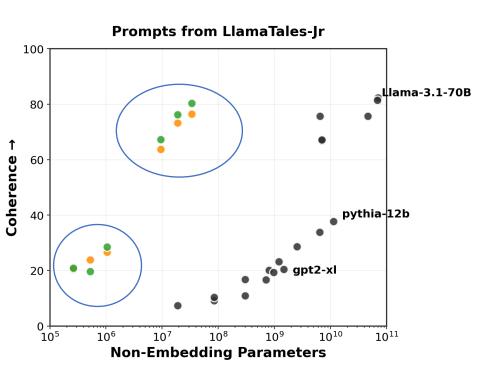


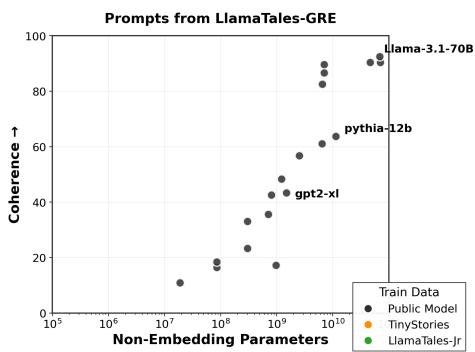
Reproduced TinyStories Findings



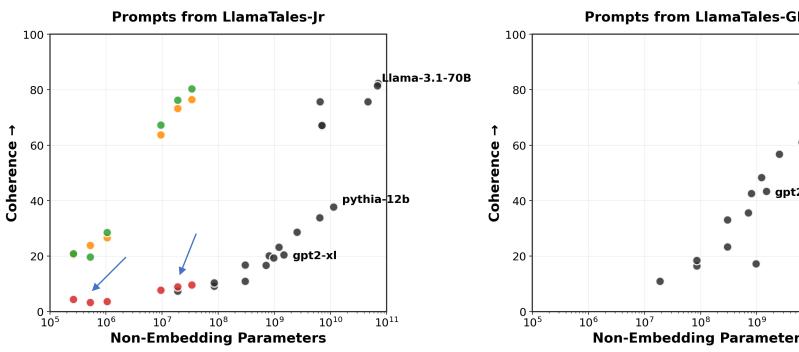


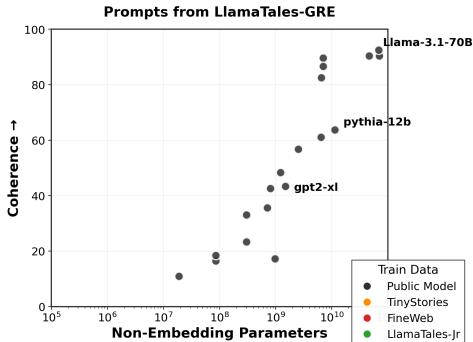
LlamaTales-Jr ≈ TinyStories



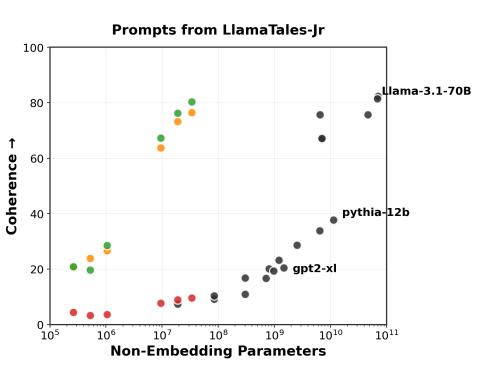


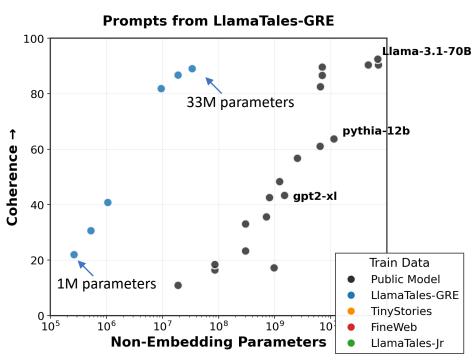
Small LMs trained on standard data struggle



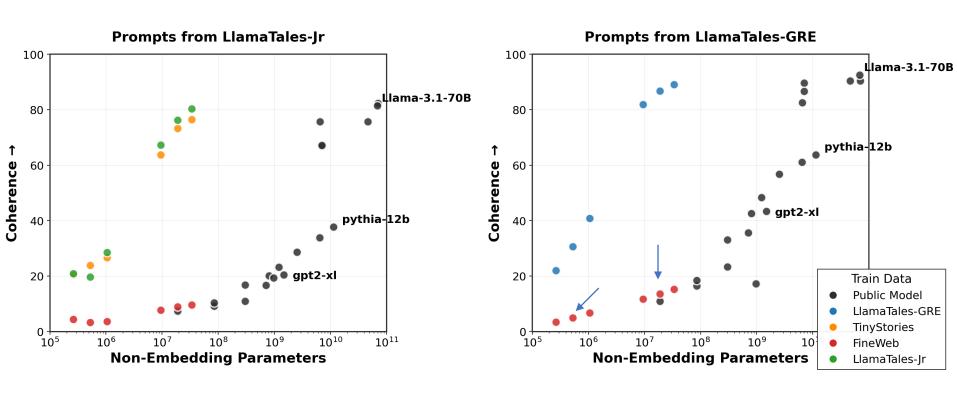


LlamaTales-GRE also coherent

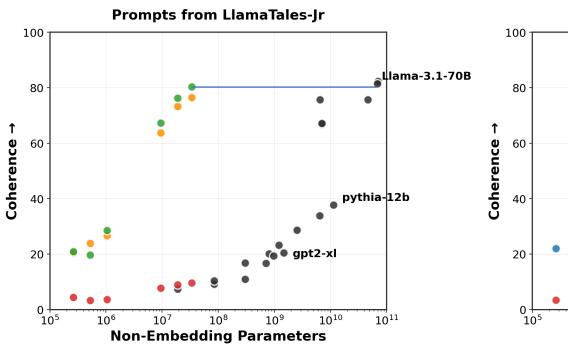


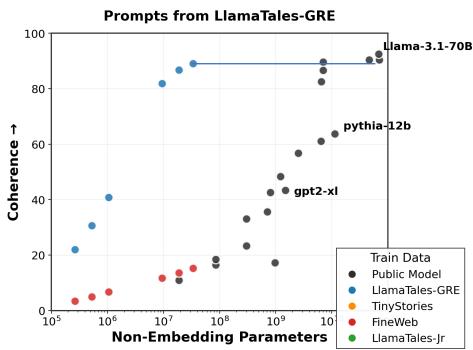


Small LMs trained on standard data struggle

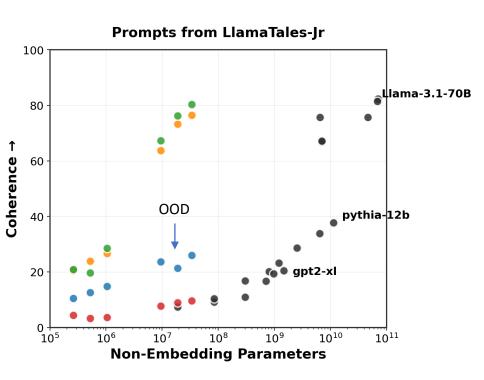


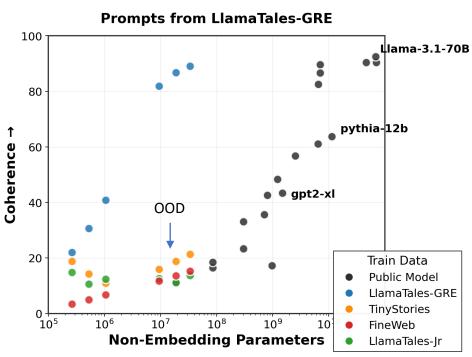
Finding 1: Readability Doesn't Predict Coherence





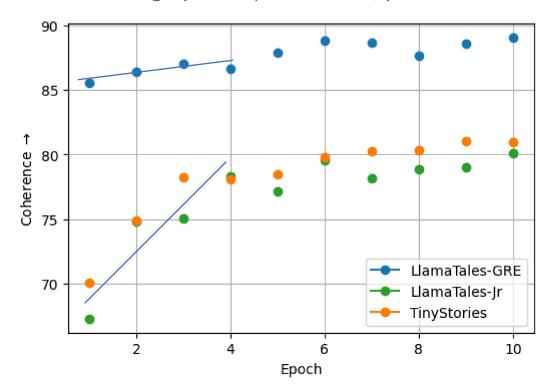
Coherence exists only in-domain





Finding 2: Readability Doesn't Speed Learning

Coherence across training epochs (one model, pattern holds across sizes)



Readability doesn't predict outcomes

- Not final quality
- Not learning speed

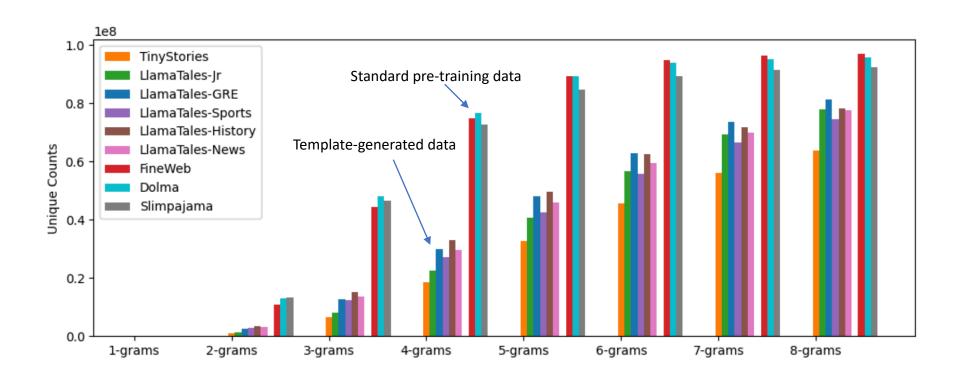
So what does?

TinyStories generation method:

- Template-based generation with minimal variation
- Creates high redundancy, narrow domain
- Crucially: fewer unique patterns to learn

Hypothesis: N-gram diversity (proxy for pattern space size) might be a better predictor than readability

n-gram profiles



Finding 3: unique n-grams correlates with learnability

Dataset



Conclusion

Finding: Dataset learnability is not predicted by readability, but is strongly correlated with unique n-grams, so in other words: **readability** ≠ **learnability**

Principle: Statistical simplicity, not developmental simplicity

Broader implication: This is a useful case study. While developmental narratives are compelling, our findings suggest that focusing on underlying statistical properties offers a promising direction for understanding and creating learnable datasets

Thank You